
FASTSOCKETS OVERVIEW

A UNIQUE, PLATFORM INDEPENDENT MIDDLEWARE FOR
FINANCE, CAPTURE AND MEDIA

Dr. Markus Fischer |
Director, NEIO Systems, Ltd. |
markus.fischer@fastsockets.com

VERSION 1.201 – 09/14/2025 - CONFIDENTIAL

NETWORK IO AS THE BOTTLENECK

• Upcoming network speeds beyond 1Gbps
introduce high CPU loads, message drops,
jitter.

• Legacy interfaces are cumbersome giving
access to feature like hardware based RX or TX
timestamps

• Legacy OSI layers introduce additional
overhead with multiple copies of data

The Problem
on the edge

FASTSOCKETS – AN INNOVATIVE LIBRARY ADDRESSING
FUTURE NETWORK TRENDS

• Kernel bypass avoids unnecessary data copies
• Additional GPU Direct support for improved

number crunching
• Improved (user level) TCP/IP stack for faster

Transmit (Trade Execution)
• RAW interface for capture - LOSSLESS
• Access to hardware based RX and TX

timestamps
• One API – multiple network Vendors

• Scale from 1Gbps to 100Gbps
• IN Place – Depict GigE Vision with Zero Copy

• Linux and Windows support

FastSockets
addressing

future network
trends

FASTSOCKETS – AN INNOVATIVE LIBRARY ADDRESSING
FUTURE NETWORK TRENDS

• Kernel bypass avoids unnecessary data copies
• Additional GPU Direct support for improved

number crunching
• Improved (user level) TCP/IP stack for faster

Transmit (Trade Execution)
• RAW interface for capture - LOSSLESS
• Access to hardware based RX and TX

timestamps
• One API – multiple network Vendors

• Scale from 1Gbps to 100Gbps
• IN Place – Depict GigE Vision with Zero Copy

• Linux and Windows support

MEDIA !

FASTSOCKETS – AN INNOVATIVE LIBRARY ADDRESSING
FUTURE NETWORK TRENDS

• Kernel bypass avoids unnecessary data copies
• Additional GPU Direct support for improved

number crunching
• Improved (user level) TCP/IP stack for faster

Transmit (Trade Execution)
• RAW interface for capture - LOSSLESS
• Access to hardware based RX and TX

timestamps
• One API – multiple network Vendors

• Scale from 1Gbps to 100Gbps
• IN Place – Depict GigE Vision with Zero Copy

• Linux and Windows support

FINANCE !

FASTSOCKETS – AN INNOVATIVE LIBRARY ADDRESSING
FUTURE NETWORK TRENDS

• Kernel bypass avoids unnecessary data copies
• Additional GPU Direct support for improved

number crunching
• Improved (user level) TCP/IP stack for faster

Transmit (Trade Execution)
• RAW interface for capture - LOSSLESS
• Access to hardware based RX and TX

timestamps
• One API – multiple network Vendors

• Scale from 1Gbps to 100Gbps
• IN Place – Depict GigE Vision with Zero Copy

• Linux and Windows support

CAPTURE !

FASTSOCKETS – AN INNOVATIVE LIBRARY ADDRESSING
FUTURE NETWORK TRENDS

• Kernel bypass avoids unnecessary data copies
• Additional GPU Direct support for improved

number crunching
• Improved (user level) TCP/IP stack for faster

Transmit (Trade Execution)
• RAW interface for capture - LOSSLESS
• Access to hardware based RX and TX

timestamps
• One API – multiple network Vendors

• Scale from 1Gbps to 100Gbps
• IN Place – Depict GigE Vision with Zero Copy

• Linux and Windows support

VENDOR and
OS AGNOSTIC

User Level TCP

ExaNIC X10/25/40/100Myri-10GConnectX 5

PCIe

Libfsock Accelerated

Supported NIC

NIC 1GbE/10GbE/25GbE/50GbE/100/GbE

Low level
(RAW) Access

Traditional Networking

PCIe

Libfsock
Accelerated

NIC Vendor A

NIC 1GbE/10GbE/25GbE/50GbE/100/GbE

Libfsock
(Vendor A)

PCIe

Libfsock
Accelerated

NIC Vendor B

Libfsock
(Vendor B)

PCIe

Libfsock Accelerated

 NIC Vendor (HW AGNOSTIC)

Libfsock
Provider

(Vendor A)

Libfsock Proxy

Libfsock
Provider

(Vendor Z)

LIBFSOCK Single Vendor vs Multi Vendor support
via PROXY and Providers

LIBFSOCK PROXY ENHANCEMENTS

• The concept of PROXY and Providers allows for easy
integration to the libfsock API and autodetection of
Hardware specific providers

• PROXY for BOTH LINUX and WINDOWS

• Proxy will detect providers

• Proxy will choose the correct provider based on IP
address

• Finally, this allows for mixed use of different vendors in the
same application

WinSock Sockets
Application

Winsock DLL

WinSock Sockets 2.2
Application

WSOCK32 DLL User Level TCP

Kernel
Bypass!

WinSock / libfsock Application

NDIS

ExaNIC X10/25/40/100Myri-10GConnectX 5
PCIe

NIC 1GbE/10GbE/25GbE/50GbE/100GbE

Low level (RAW)
Access

LIBFSOCK FOR FINANCE

• 1/10/25/50/100 GbE support on supported HW
• Take NIC for best purpose

• Map / transfer applications to kernel-bypass
• Lowest latencies, Lowest jitter
• Lowest tick to trade
• Tools like exanic-capture / exanic-replay

• Best in class timestamping
• HW timestamping for RX and TX for both UDP

and TCP protocols
• Windows and Linux Support

• Any recent linux distribution
• Windows 11/ Server 2016 and later

LIBFSOCK GIGE VISION ACCELERATION
• 10/25/50/100 GbE support on supported HW
• Efficient handling of GigE Vision Protocol

• Support of Version 1.1 and 2.1
• Hardware assisted separation of HDR and DATA

(frames)
• Multiple Camera support per server:

• 8 * 10/25GbE cameras
• Optional time stamping
• Aggregated Receives: Low CPU overhead

• Blocking, timeout
• Windows and Linux Support

• Windows 10 and later
• Any recent Linux distribution

Kernel

10/25/100GbE Wire TCP/UDP Traffic

Application Application Application

Libfsock SDK libfsock SDK GigEVision SDK

User Space Receive
Queue

User Space Receive
Queue

User Space Receive
Queue

Next Frame Next Frame Next Frame

 GVSP Data

10/100
GbE

Switch

10/25GbE

Libfsock GVA with Multiple 10/25G Cams

LibFSOCK GigE Vision Data Flow

• Zero Copy

• Data (Images) in Memory
Placement

• Single Digit CPU Load
X

LibFSOCK GigE Vision Data Flow with GPU Support

• Zero Copy

• Data (Images) in Memory
Placement

• Single Digit CPU Load

• Additional
Offload to GPU

Example: fsock_gva_simple_recv.exe with Zero Load

• Dropless

• Zero Copy

• Data (Images)
in Memory
Placement

• Single Digit
CPU load

LibFSOCK PTP Solution with Hardware based
Timestamps for best accuracy

• PTP works by using a two-way exchange
of timing messages, known as “event
messages”

• Time offset between master and slave
clocks is calculated based on
timestamps at packet sending and
receiving

• 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑡2 − 𝑡1 − 1 2 𝑡𝑚𝑠 + 𝑡𝑠𝑚
= 𝑡2 − 𝑡1 − 1 2 { 𝑡4 − 𝑡1 − 𝑡3 − 𝑡2 }

•🡪 Packet timestamp accuracy is
important for PTP

LibFSOCK PTP Solution with Hardware based
Timestamps for best accuracy

• HW Timestamping allows for best offset synchronization
PTPD adjusts
System clock

PTPD adjusts
PHC

Legacy Approach
achieves microsecond
accuracy only

Approach with oscillators
and hardware
timestamps for
nanosecond accuracy

LIBFSOCK FOR KERNEL BYPASS

LibfSock: NIC agnostic Sockets a-like API (Linux and Windows)
• fsock_init() – initialize library
• fsock_open() -- create an endpoint, can multiplex several multicasts
• fsock_bind() – allocate ports
• fsock_connect(), fsock_accept() – establish connection
• fsock_recv(), fsock_send() – send and receive data
• fsock_close() – close endpoint

Aspects and Concepts :

• Focus on fast RX (HFT/MEDIA/SECURITY), fast TX (HFT)

• Provide additional functionality like RX and TX timestamps

• Arista Switch Timestamping support (HFT)

 /* init fsock lib */
 rc = fsock_init(FSOCK_VERSION_API);
 if (rc)
 printf("Could not init libfsock", rc);

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = inet_addr(local_addr);
 sin.sin_port = port;

 rc = fsock_open(&sin.sin_addr, FSOCK_GVA, &gva_dev);
 if (rc)
 printf("Could not open a libfsock GVA device", rc);

 /* request alternate RING BUF SIZE (default 128MB) */
 rc = fsock_set_ep_attribute(gva_dev, FSOCK_RINGBUF_SIZE, NULL, 0);
 if (rc)
 printf("Could not set ring buf size", rc);

 rc = fsock_bind(gva_dev, FSOCK_BIND_DEFAULT, port, NULL, &gva_chan);
 if (rc)
 printf("Could not open a libfsock GVA Channel (stream)", rc);

 /* open an mcast stream */
 if (mcast) {
 struct ip_mreq mreq;
 mreq.imr_interface.s_addr = 0;
 mreq.imr_multiaddr = maddr.sin_addr;

 rc = fsock_setopt(gva_chan, FSOCK_JOIN_MCAST, &mreq, sizeof(mreq));
 }

LIBFSOCK – GVA : SIMPLE RECEIVER

 fsock_gva_alloc_type_t gva_alloc;
 gva_alloc.bufsize = 128;
 gva_alloc.num = num_bufs;
 rc = fsock_setopt(gva_chan, FSOCK_GVA_ALLOC, &gva_alloc, sizeof(gva_alloc));

 printf("Allocated and Queued %u buffers\n", num_bufs);

 /* timeout */
 if (block_timeout)
 rc = fsock_setopt(gva_chan, FSOCK_RX_TIMEOUT, &block_timeout, sizeof(block_timeout));

 while (blocks_recvd < iters) {
 /* wait for data blocks */
 rc = fsock_recv(gva_chan, FSOCK_RECV_DEFAULT, buf, sizeof(buf), &rxinfo);

 rc = fsock_recv(gva_chan, FSOCK_RECV_DEFAULT | FSOCK_RECV_GVABLOCK_INPLACE, &gva_blk, sizeof(gva_blk), &rxinfo);

 rc = fsock_recv(gva_chan, FSOCK_RECV_NONBLOCK | FSOCK_RECV_GVABLOCK_INPLACE, &gva_blk, sizeof(gva_blk), &rxinfo);
 if (rc != 0) { /* check for errors */ }

 printf ("Received data block %u, type:%u, len:%u, status=0x%x",
 gva_blk.block_id, gva_blk.payload_type, gva_blk.payload_length, gva_blk.status);
 blocks_recvd++;
 /* requeue this block */
 rc = fsock_setopt(gva_chan, FSOCK_GVA_QUEUE_BUF, &gva_blk.gva_buf, sizeof(gva_buf_t));
 if (rc != 0) { /* check for errors */ }
 } /* while */

MULTIPLE (GENERIC) VENDOR SUPPORT

•Mellanox / Nvidia – ConnectX 5,6,7
• Allows for Linux/Windows Support
• GPU Direct Support
• 1,10GbE – 100GbE

• Solarflare – X2552
• Windows (libfsock-XIO) , Linux

• Exablaze / Cisco – ExaNIC X10, X25, X40
• Linux and Windows
• 10/25/40 GbE support
•Best in class Windows Solution

Media/
Finance

Finance

Finance

● Broadcom, Intel, … (libfsock-XIO)

FAST SOCKETS FOR EXANICS:

• Teaming support, multiple bandwidth , HA,
fault tolerance !

•ExaDriver for Windows
•Creates Network Environment known from

standard Ethernet NICs
• NDIS 6.X, Windows Server and Clients
• Additional Kernel Bypass
• IP connectivity

• Ping is still your friend
• Use CIFS, DHCP, …

• VLAN support

• Lowest Latency as of today
• PTP support – The first hardware timestamps

based PTP Solution on Windows

● libfsock-exa
○ native driver and library for ExaNICs

● libfsock-mlx
○ native driver and library for ConnectX

● libfsock-xio

○ driver and library for any vendor

FastSockets Types

NIC BENEFITS
Acceleration TX Acceleration RX Tick To Trade/

Low Latency
MEDIA
EXTENSIONS

OS

Cisco, e.g
ExaNIC X10/25

UDP: YES
TCP: YES
MODUS: PIO

UDP: YES
TCP: YES
MODUS: DMA

SUITED
720ns t2t

NO Windows,
Linux

MLX, e.g
Connect-X5,6,7

UDP: YES
TCP: NO
MODUS: DMA

UDP: YES
TCP: NO
MODUS: DMA

NOT SUITED,
large RX
RingBuffers.
Suited via XIO
Proxy

YES: GVA Windows,
Linux

Solarflare UDP: YES
TCP: YES
MODUS: PIO/DMA

UDP: YES
TCP: YES
MODUS: PIO/DMA

SUITED
800ns t2t

NO LINUX

Intel/Solarflare/
Broadcom/MLX/
NVIDIA [XIO]

UDP: Yes
TCP: Yes
MODUS:PIO

UDP: YES
TCP: Yes
MODUS: DMA

SUITED, large
RX RingBuffers

YES: GVA Cloud /
Windows/
Linux (v2)

Questions ?

